
Doing Real-Time with ROS 2

An Introduction to Tooling

Benjamin Goldschmidt, Stefan Schürmans, Florian Walbroel

ROSCon 2019 Workshop

30.10.2019, Macao

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 2

Overview

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 3
(https://discourse.ros.org/t/questionnaire-how-do-you-debug-your-software-in-ros/1988)

24 answers

“If your software has real-time constraints, how do you debug it?”

Motivation

“rosout/printf and hope for the best”

“[...] avoid them where possible”

“[...] stream debug data out to a non real-time thread for inspection.”

“By using rosbag to replay the same input”

“Minimise the hard real-time part [...]”
“Attach gdb on crash [...]”

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 4

▪ In this talk, basic approaches for
proofing/evaluating real-time ROS2
applications will be introduced

▪ For each approach, a small set of
(Linux) tools will be presented

▪ Depending on the target platform,
OS, application, and use-case, there
may be more fitting tools

Introduction

Selection of Linux performance tools1

1(©2019 Brendan Gregg, source: http://www.brendangregg.com/linuxperf.html)

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 5

PROOFING ROS2 REAL-TIME APPLICATIONS

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 6

▪ Formally prove that a system always (!) reacts to an incoming input...
▪ ...with the functionally correct output (functional correctness)
▪ ...within a certain amount of time (hard real-time)

▪ (Simple) Example:
▪ Sum up worst-case execution times (WCETs) and latencies in critical event chain

General Approach

1(e.g. from µC datasheet (DS)) 2(e.g. from peripheral DS) 3(e.g. by cycle counting using assembly + µC DS)

Actor
output

Sensor Value

Read sensor
value

Computation A

Computation B

Input
event

Set
output

Peripheral access
time2: 20 µs

Interrupt
latency1: 10 µs WCET3: 5 µs WCET3: 15 µs

WCET3: 25 µs

Peripheral access
time2: 40 µs

Max. Latency: 10 µs + 20 µs + 5 µs + max(15 µs, 25 µs) + 40 µs = 100 µs

Decision

System

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 7

▪ System:
▪ Instruction timings depend on:

▪ Pipeline state, branch predictor, etc.

▪ Memory access times depend on:
▪ Cache/Page/Swap state, bus contention, etc.

▪ OS task execution depends on OS effects:
▪ Scheduler decisions, other tasks, etc.

▪ Limitations of static analysis:
▪ Input dependence
▪ Loop iteration counts / recursion bounds
▪ Pointer analysis

Challenges

1(©2008 Appaloosa, CC BY-SA 3.0, source: https://de.wikipedia.org/wiki/Intel-Nehalem-Mikroarchitektur)

Intel Nehalem Microarchitecture (2010)1

// WCET!?

void bar(int c, char** data) {

while (c-- > 0) {

bar(c, &data[c]);

}

...

}

int main(int argc, char** argv) {

bar(argc, argv);

}

https://commons.wikimedia.org/wiki/User:Appaloosa
http://creativecommons.org/licenses/by-sa/3.0/

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 8

▪ Academic:
▪ Static analysis: “A Unified WCET Analysis Framework for Multi-core Platforms”

(http://www.comp.nus.edu.sg/~rpembed/mxchronos/mxc-timing.pdf)
▪ Mixed static/measurement: “An End-To-End Toolchain [...]”

(https://www4.cs.fau.de/Publications/2017/sieh_17_isorc.pdf)

▪ Commercial:
▪ Static analysis: AbsInt aiT

(https://www.absint.com/ait)
▪ Mixed static/measurement: Rapita RapiTime

(https://www.rapitasystems.com/products/rapitime)

▪ Problem: Limited/No support for typical ROS2 target platforms (based on
x86_64 or ARMv8-A processors)

→Applicability to ROS2 systems!?

Tools

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 9

EVALUATING ROS2 REAL-TIME APPLICATIONS

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 10

▪ Observe application/system behavior to evaluate real-timeness:
▪ Where: Inside vs. outside the system (trade-off: intrusiveness vs. insights)
▪ How: Source-, IR, binary-, system/kernel-instrumentation

▪ Sampling vs. exhaustive tracing (trade-off: overhead vs. completeness)

→ Limitation: Absence of constraint violations in tests does not prove real-timeness

▪ General recommendations:
▪ Consider measurement overhead
▪ Measure many times and many scenarios (no proof, but increases confidence)
▪ Measure additional system metrics (CPU load, etc.) (helps when debugging)
▪ Add stress tests (CPU, memory, I/O) to evaluate system under extreme conditions

General Approach

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 11

Scenario:
▪ Autoware.Auto1 autonomous driving framework (ROS2-based,

open source) 3D perception pipeline (hash: ee99e9b8)
▪ ROS 2 Dashing built from source (with instrumentation)

Target Platform:
▪ Odroid-C2:

▪ ARM A53 @ 1.5 GHz (aarch64)
▪ 2 GB DDR3 RAM
▪ Ubuntu 18.04, Kernel v3.16

Test Setup

1(https://gitlab.com/autowarefoundation/autoware.auto)

Velodyne
Driver

Ground
Filter

Down-
sampling

/pcl2
UDP

Sample RViz output for the 3D
perception pipeline

/points_downsampled

/nonground_points

/points_ground

2(original name: /test_velodyne_node_cloud_front) 3(©2016 Peba, CC BY-SA 4.0, source: https://de.wikipedia.org/wiki/ODROID)

Odroid C2 board3

https://creativecommons.org/licenses/by-sa/4.0

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 12

Tools/Techniques: Overview

Tool/Technique Type

GDB Source code debugger

ROS Performance Test Communication benchmark

ROS Tracetools Source/system instrumentation

printf/rosout Source instrumentation

rosbag2 System (here: ROS2) instrumentation

SLX Performance Testing Platform Commercial ROS2 testing platform

--- ---

perf System instrumentation

LD_PRELOAD1 Binary interception

Stress Testing Tools1 Benchmarks/Generators

1(not covered here, but available on demand in backup slides)

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 13

▪ Type: Source code debugging
▪ ROS nodes can be started inside gdb directly:

ros2 run --prefix 'gdb -ex run --args'

▪ Multiple nodes can be debugged “in parallel” (in
multiple terminals)

▪ Assessment:
▪ (+) Simple usage
▪ (+) Internal state of ROS nodes can be examined
▪ (-) Halting execution (interactive / breakpoint)

conflicts with real-time behavior
▪ (-) How to efficiently handle multiple sessions in

parallel?!

GNU Debugger "gdb"
https://www.gnu.org/software/gdb/documentation/

#0 recvmsg ()

#1 boost::...::socket_ops::recvfrom (

ec=..., flags=0, count=1, ...)

#2 boost::...::sync_recvfrom (

ec=..., flags=0, count=1, ...)

...

#5 boost::...::receive_from<...> (

ec=..., flags=0, ...)

#6 autoware::...::get_packet (

socket=..., pkt=..., ...)

at udp_driver_node.hpp:154

#7 autoware::drivers::...::run (

this=..., max_iterations=0)

at udp_driver_node.hpp:102

#8 main (argc=3, argv=0x7ffc46355598)

at velodyne_cloud_node_main.cpp:38

Backtrace of the Velodyne Driver
node

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 14

▪ Type: Benchmark (source instrumentation)
▪ Benchmark for ROS2 communication means

(e.g. FastRTPS, Connext DDS Micro, etc.)
▪ Creates an artificial ROS2 graph, sends

messages between nodes, and measures comm.
performance/latency

▪ Assessment:
▪ (+) Highly configurable
▪ (+) Support for distributed ROS2 systems
▪ (-) Limited ROS2 graph configurability

(→ https://github.com/irobot-ros/ros2-performance)

ROS Performance Test
https://github.com/ApexAI/performance_test

$ ros2 run performance_test perf_test -h

Allowed options:

--rate The publishing rate data

--communication Communication plugin to use

(ROS2, FastRTPS, ...)

--reliable Enable reliable QOS.

--transient Enable transient QOS.

--keep_last Enable keep last QOS.

--history_depth Set history depth QOS.

--num_pub_threads Max. num. of pub. threads.

--num_sub_threads Max. num. of sub. threads.

--roundtrip_mode Selects the round trip mode

(None, Main, Relay).

[...]

Shortened/Adapted command line options

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 15

ROS Performance Test
Results

Results for two sample runs1 of the ROS performance test tool on the test
platform

1(-c ROS2 -l log -t Array1k --max_runtime 30)

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 16

▪ Type: Source/System instrumentation
▪ Custom tracepoints in ROS2 libraries (rcl, rclcpp)

(included in ROS2 Eloquent)
▪ Uses LTTng as backend to trace ROS2 core (e.g.

callback durations, msg. send/received, etc.)
▪ Results can be viewed with Trace Compass or

parsed with Babeltrace/Jupyter Notebooks

▪ Assessment:
▪ (+) Low-effort/-overhead tracing of the ROS2 core
▪ (+) System internals can be traced in parallel
▪ (-) Requires custom ROS2 source build

(→ swappable packages are planned)

ROS Tracetools
https://micro-ros.github.io/docs/tutorials/advanced/tracing

Callback durations over time for the
topic /pcl in the Downsampling node

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 17

▪ UDP packets are sent out continuously during the rotation of the LIDAR:
▪ Acquisition and transfer of a complete point cloud (PCL) takes ~100 ms (→ 10 Hz)

▪ Constraint:
▪ Detect start of PCLs and signal using new topic (/pcl_start) (not recommended!)
▪ Interval: publish_start(/pcl_start)→ publish_end(/points_downsampled)

▪ Max. Latency c0: 100 ms (min. duration of PCL transfer) + 20 ms (arbitrarily selected)

Test Setup (2)

Velodyne
Driver

Ground
Filter

Down-
sampling

/pcl
UDP

/points_downsampled

/nonground_points

/points_ground

Max. Latency c0 = 120 ms

/pcl_start

Defining a Real-Time Constraint

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 18

▪ Type: Source instrumentation
▪ Log time and data at certain code locations:

▪ RCLCPP_INFO(...)

▪ std::cerr + std::chrono

▪ ...
▪ Parse log files and calculate constraints based

on printed timestamps

▪ Assessment:
▪ (+) Simple and flexible
▪ (-) High amount of manual work
▪ (-) May affect performance (e.g. no inlining)

rosout/printf

...

[INFO 1571065761.831277989]

[vlp16_driver_node]:

PCL_START (run() at udp_driver_node.hpp)

...

...

while(...) {

PacketT pkt;

(void) get_packet(pkt, m_udp_socket);

if (first_packet_of_pcl) {

RCLCPP_INFO(node_logger, "PCL_START");

first_packet_of_pcl = false;

}

if (this->convert(pkt, output)) {

first_packet_of_pcl = true;

m_pub_ptr->publish(output);

...

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 19

rosout/printf
Measuring Latency (Two Sample Runs)

50

100

150

C
o

u
n

t

200
printf

Latency / ms
100 200150

50

100

150

200
rosout rosout

printf

1

100 200150

1

2

2

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 20

▪ Type: System (here: ROS2) instrumentation
▪ Capture rosbag during application execution
▪ Parse rosbag and use timing of ROS messages to

calculate constraints

▪ Assessment:
▪ (+) Simple tracing setup (ros2 bag record -a)

▪ (+) Timing data combined with functional data
▪ (-) Tracepoints limited to ROS messages
▪ (-) Overhead (but: configurable)

rosbag2
https://github.com/ros2/rosbag2

topics = {} # dict: id -> name

events = {} # dict: t -> event

with sqlite3.connect(bag) as conn:

Parse topics

query = conn.execute(

'select * from topics')

for id, name in query:

topics[id] = name

Parse events

query = conn.execute(

'select * from messages')

for topic_id, t in query:

topic_name = topics[topic_id]

events.setdefault(t, []).

append(topic_name)

Sample Python script to parse
rosbags

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 21

rosbag2
Results (Two Sample Runs)

200

150

100

50

C
o

u
n

t

Latency / ms

-3000 -2000 -1000 0 1000 -3000 -2000 -1000 0 1000

1 2

??

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 22

rosbag2
Results

/pcl_start (rosout)

/points_downsampled (rosout)

/pcl_start (rosbag)

/points_downsampled (rosbag)

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 23

▪ Built-in system, ROS2, and
application tracing:
▪ Wide range of metrics (CPU, ROS2,

network, etc.)
▪ Multi-run analysis
▪ Configurable stress generators

(CPU, memory, ...)

▪ Open API:
▪ Easily integrates into existing CI
▪ Automated (RT) constraint testing

▪ Demonstrated here

▪ Scalable:
▪ Cloud/on-premise/desktop support

SLX Performance Testing Platform
https://www.silexica.com/

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 24

SUMMARY

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 25

▪ Proving RT constraints for typical ROS 2
systems is very hard and costly (and in
many cases unfeasible)

▪ Measurement-based approaches can be
integral in understanding/optimizing the
RT properties of a ROS2 system but give
no guarantees

▪ There are many tools that can help
optimize a ROS2 system for RT, but they
cannot replace a proper RT system
design

Summary

CPU Load Statistics for different
Autoware.auto commits in the SLX

Performance Platform

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 26

Thanks!

Visit booth (23) to learn more about our
tools and enter the raffle for a chance to win

a Nvidia Jetson AGX Javier devkit!

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 27

BACKUP

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 28

▪ Type: System instrumentation (sampling)
▪ perf has many different operating modi, shown

here: Sampling mode
▪ Sample stack traces at regular intervals
▪ Interactive stack trace visualizer:

(http://www.brendangregg.com/flamegraphs.html)

▪ Assessment:
▪ (+) Lightweight
▪ (+) Full system sampling supported
▪ (+) Very good for process/function profiling
▪ (-) Not directly suited to evaluate RT constraints

perf record -F
https://perf.wiki.kernel.org/index.php/Main_Page

Sample Flamegraph for the
Downsampling Node (excerpt)

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 29

▪ Type: Binary interception
▪ Intercept calls to shared libraries: LD_PRELOAD=/myLib.so ros2 run ...

▪ E.g. Detect dynamic memory allocations in (unit) tests using OSRF testing tools
(https://github.com/osrf/osrf_testing_tools_cpp)

▪ Assessment:
▪ (+) No changes to application or library
▪ (+) No re-compilation needed
▪ (-) Only at shared library boundaries

▪ Results:
▪ Calls to malloc, free, etc. over time in the three perception pipeline modules

LD_PRELOAD
https://www.linuxjournal.com/article/7795

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 30

▪ dohell script:
▪ Starting a sensible mix of latency generators, with no one clearly dominating

(http://groups.google.com/group/linux.kernel/msg/0c88c397347cbd2a)

▪ Linux stress tool:
▪ -c: CPU load, -m: Allocate/free memory, -i: I/O load

▪ File system access:
▪ find /dir/ - Iterates over /dir/→Causes disk accesses → Interrupts
▪ du /dir/ - Computes total size of all files in /dir/→Causes disk accesses

▪ Cause network traffic:
▪ ping -l 9999 -i 0.0001→High locality in small function of network stack

→Does not stress cache + virtual memory management

Stress Testing Tools
Generators

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 31

▪ Benchmarking interrupt processing in kernel:
▪ RealFeel: measure timing accuracy of periodic time interrupt

(http://brain.mcmaster.ca/~hahn/realfeel.c)

▪ Benchmarking RT-extended Linux kernel:
▪ Linux RT Benchmarking Framework (https://www.opersys.com/lrtbf)
▪ Hourglass: Synthetic application for benchmarking of ms/µs task scheduling

(http://www.cs.utah.edu/~regehr/hourglass)

Stress Testing Tools
Benchmarks

