SILEXICA z2aam

Doing Real-Time with ROS 2

An Introduction to Tooling

Benjamin Goldschmidt, Stefan Schiirmans, Florian Walbroel

ROSCon 2019 Workshop

30.10.2019, Macao

Overview

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 2

rosout/printf and hope for the best “By using rosbag to replay the same input”

“l...] avoid them where possible”

“If your software has real-time constraints, how do you debug it?”
“[...] stream debug data out to a non real-time thread for inspection.”

“Attach gdb on crash [...]’ Minimise the hard real-time part [...]

©SILEXICATAllrights reserved | Confidential [30-Oct-1913 (https://discourse.ros.org/t/questionnaire-how-do-you-debug-your-software-in-ros/1988)

24 answers

Introduction

= |nthis talk, basic approaches for
proofing/evaluating real-time ROS2
applications will be introduced

= For each approach, a small set of
(Linux) tools will be presented

= Depending on the target platform,
OS, application, and use-case, there
may be more fitting tools

Linux Performance Tools

Various, static:

" teptop teplife |

strace | opensnoop statsnoop e
s sysctl /sys

dmesg lshw

journaletl :

cpconnlat tcpretrans'

L eRed
Operating System
2\ L pudist execsnoop ' Hardware
Applications runlat cpudist
pert il "
ftrace i System Libraries
e 5
e zfs* System Call Interface
(BPF) : GPU
VFS : Sockets Seheduler
funccount
::unciatency : I File Systems 2 TCP/UDP
:stackcount e 2 2
‘kprobe : k] ; Virtual
iuprobe X Volume Manager P Memory G cPU
largdist g o - CPU Interconnect
5 ; i, 3
i trad : i . e —
e Block Device Int. Ethernet ~. Clocksource . 1
i 3 z i Memory |
S7 / Device Drivers : Bus

static performance tools

Firmware

DRAM

ibiolatency bitesize :

ardirgs
: ttysnoop

{numastat :

Expander Interconnect

]
......... 1/0 Controller

\ | | Interface Transports -
wer
Disk Disk Swap FAN Supply
f;;“:f":g “ipmitool |

{ dmidecode :

Selection of Linux performance tools?

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 4

1(©2019 Brendan Gregg, source: http://www.brendangregg.com/linuxperf.html)

General Approach

= Formally prove that a system always (!) reacts to an incoming input...
..with the functionally correct output (functional correctness)
..within a certain amount of time (hard real-time)

= (Simple) Example:
Sum up worst-case execution times (WCETs) and latencies in critical event chain

Interrupt Peripheral access Peripheral access
latency: 10 ps time2: 20 ps WCETS: 5 ps WCET?3: 15 ps time2: 40 ps
[\\/ l’/ _\\/ -~
Input ;\/ | Read sensor Computation A Ll S€t Actor
event value P output output
) [» Computation B 7
Sensor | Value _— System

WCET?3: 25 ps

Max. Latency: 10 ys + 20 ys + 5 ps + max(15 pys, 25 ps) + 40 ps = 100 us

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 6 1(

e.g. from uC datasheet (DS)) 2(e.g. from peripheral DS) 3(e.g. by cycle counting using assembly + uC DS)

Challenges

= System:

= |nstruction timings depend on:

= Memory access times depend on:
= Cache/Page/Swap state, bus contention, etc.
= OS task execution depends on OS effects:

= Pipeline state, branch predictor, etc.

= Scheduler decisions, other tasks, etc.

= Limitations of static analysis:

= |nput dependence
= Loopiteration counts/recursion bounds

Pointer analysis

BN N BN N N BN BN BN BN BE BN B BE BN B B B BN B B B W

a2 B B B N B N B B B R R R B B BN B B B B |

H E A S S EEEE E E e E E E EEEEENEN.

- - . A N B A N B B N N 0 N 0 0 B 0|

|| A S S S S S S S DS EEEEEEEN

EE EEEEEEEEEEEE e e e .

o . | - | | N N N B N N | . .

m [| . . HEEEENEE®ENEBN

| |] | L] B | |

Intel Nehalem microarchitecture | N |
|
quadruple associative Instruction Cache 32 KByte, UiEme
128-entry TLB-4K, 7 TLB-2/4M per thread
; * -
i Quick Path >
Branch Inter-
| Prefetch Buffer (16 Bytes) | Prediction comect |
1 globalibimodal, >
Predecode & loop, indirect T 4% 20 Bit
Instruction Length Decoder jmp 6.4 GTis
| .

Instruction Queue

) DDR3 - >

18 x86_ Instructions M < >

t
// WCET!? "

void bar (int ¢, char** data) {
while (c—-- > 0) {
bar (c, &datalc]):;
}

}

int main(int argc, char** argv) {
bar (argc, argv);

}

I 3 CZ-TCDar

i l l 128 128 28

Result Bus

128 o
octuple associative Data Cache 32 KByte,
64-entry TLB-4K, 32-entry TLB-2/4M

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 7

1(©2008 Appaloosa, CC BY-SA 3.0, source: https://de.wikipedia.org/wiki/Intel-Nehalem-Mikroarchitektur)

https://commons.wikimedia.org/wiki/User:Appaloosa
http://creativecommons.org/licenses/by-sa/3.0/

Tools

= Academic:

= Static analysis: “A Unified WCET Analysis Framework for Multi-core Platforms”
(http://www.comp.nus.edu.sg/~rpembed/mxchronos/mxc-timing.pdf)

= Mixed static/measurement: “An End-To-End Toolchain[...]”
(https://www4.cs.fau.de/Publications/2017/sieh 17 isorc.pdf)

= Commercial:
= Static analysis: AbsInt aiT
(https://www.absint.com/ait)

= Mixed static/measurement: Rapita RapiTime
(https://www.rapitasystems.com/products/rapitime)

= Problem: Limited/No support for typical ROS2 target platforms (based on

x86_64 or ARMv8-A processors)
- Applicability to ROS2 systems!?

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 8

General Approach

= Observe application/system behavior to evaluate real-timeness:
= Where: Inside vs. outside the system (trade-off: intrusiveness vs. insights)
= How: Source-, IR, binary-, system/kernel-instrumentation
= Sampling vs. exhaustive tracing (trade-off: overhead vs. completeness)

- Limitation: Absence of constraint violations in tests does not prove real-timeness

= General recommendations:
= Consider measurement overhead
= Measure many times and many scenarios (no proof, but increases confidence)
= Measure additional system metrics (CPU load, etc.) (helps when debugging)
= Add stress tests (CPU, memory, I/O) to evaluate system under extreme conditions

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 10

Test Setup

m
|
-
|
.
|
m
»

Scenario:
= Autoware.Auto! autonomous driving framework (ROS2-based,
open source) 3D perception pipeline (hash: ee99e9b8)
= ROS 2 Dashing built from source (with instrumentation)

/nonground_points % |
Ground .
: Sample RViz output for the 3D
Filter . : 10
UDP | Velodyne o2 /points_ground perception pipeline
Driver P 5 R
ownh- 1, /points_downsampled B RN
sampling
Target Platform:
= QOdroid-C2:

= ARMAS53 @ 1.5 GHz (aarché64)

T »
\ \ ,
\ ’
))
»
% 3)
*» s\
be o
\ oo®
% . ¢
s

= 2GBDDR3RAM
= Ubuntu 18.04, Kernel v3.16 -
Odroid C2 board?
OSILEXICA | Allrights reserved | Confidential | 30-Oct-19 11 Y(https://gitlab.com/autowarefoundation/autoware.auto)

2(original name: /test_velodyne_node_cloud_front) 3(©2016 Peba, CC BY-SA 4.0, source: https://de.wikipedia.org/wiki/ODROID)

https://creativecommons.org/licenses/by-sa/4.0

Tools/Techniques: Overview

Tool/Technique

GDB

ROS Performance Test

ROS Tracetools

printf/rosout

rosbag?2

SLX Performance Testing Platform
perf

LD PRELOAD?

Stress Testing Tools?!

Source code debugger
Communication benchmark
Source/system instrumentation
Source instrumentation

System (here: ROS2) instrumentation
Commercial ROS2 testing platform
System instrumentation

Binary interception
Benchmarks/Generators

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 12

1(not covered here, but available on demand in backup slides)

GNU Debugger "gdb"

https://www.gnu.org/software/gdb/documentation/

= Type: Source code debugging
= ROS nodes can be started inside gdb directly:

ros2 run —--prefix 'gdb -ex run --args'
= Multiple nodes can be debugged “in parallel” (in
multiple terminals)

= Assessment:
= (+)Simple usage
= (+4)Internal state of ROS nodes can be examined
= (-) Halting execution (interactive / breakpoint)
conflicts with real-time behavior
= (-) How to efficiently handle multiple sessions in
parallel?!

L B N N B |
H EEESESESESESSSSSSESSSSENSNNSEND®ND®NDN®NNMN
' & 2 B B B B A BN B B R B B BB E R BB R BB B ERE B
o .. A 2 B R AR A R BN O R R OB R OB R BN B B |
| A A S S S S S S S S S S E e EEEEEEEENn
. B B B A B B B B B B B BN B R AR B R OB R B BR B
o . | | || EEEEEEN [N B N B BN
= o= | B N | L. A B B B R R B RO R BB B!
[| | [| L] | N | | []
| N | |]
|
]]
s | -
|
[]
#0 recvmsg ()
#1 Dboost::...:: :socket ops::recvfrom (
ec= , flags 0, count=1l, ...)
#2 Dboost::...:: :sync_recvfrom (
ec=..., flags=0, count=1l, ...)
#5 Dboost::...:: :receive from<...> (
ec=..., flags 0, ...)
#6 autoware::...:: :get packet (
socket=..., pkt=. o)
at udp driver node. hpp 154
#7 autoware::drivers::...::run (
this=..., max iterations=0)
at udp driver node.hpp:102
#8 main (argc=3, argv=0x7ffc46355598)

at velodyne cloud node main.cpp:38

Backtrace of the Velodyne Driver
node

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19| 13

ROS Performance Test C SEREEZESERIIEEoIIsIsiiiiis
https://github.com/ApexAl/performance test S o -E':' :-EE
= Type: Benchmark (source instrumentation)
= Benchmark for ROS2 communication means $ ros2 run performance_test perf test -h
(e.g. FastRTPS, Connext DDS Micro, etc.) L seblioning rate dacs
= Creates an artificial ROS2 graph, sends --communication f;ggg?igzziggéfu?ff) to use
messages between nodes, and measures comm. --reliable Enable reliable QOS.
performance/latency O ehonie een 1ot oos.
~-history depth Set history depth QOS.
--num pub_threads Max. num. of pub. threads.
= Assessment: --num_sub_threads Max. num. of sub. threads.
= (+) Highly configurable R e e ooy DT
= (+) Support for distributed ROS2 systems S
= (-) Limited ROS2 graph configurability Shortened/Adapted command line options

(= https://github.com/irobot-ros/ros2-performance)

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 14

ROS Performance Test

42.0

-41.5

-41.0

- 40.5

- 40.0

- 39.5

- 39.0

- 38.5

- 38.0

Results
—— latency_min (ms) 104 — latency_min (ms)
10 4 —— latency_max (ms) -41.5 —— latency_max (ms)
—— latency_mean (ms) —— latency_mean (ms)
—— latency_variance (ms) * 100 | 41.0 gd — latency variance (ms) * 100
g - ——— maxrss (Mb) (right) — maxrss (Mb) (right)
- 40.5
6 .
6 - 40.0
- 39.5
4 -
4
- 39.0
2 1 - 38.5 27
/—_/_/—/_4‘ 38.0 - N)J L
5 10 15 20 25 30 5 10 15 20 25 30

T _experiment

T _experiment

Results for two sample runs?! of the ROS performance test tool on the test

platform

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 15

{-c ROS2 -1 log -t Arraylk --max runtime 30)

ROS Tracetools

https://micro-ros.github.io/docs/tutorials/advanced/tracing

pption::filters::voxel_grid_nodes::VoxelCloudNode::?)(std::shared_ptr<sensor_msgs::msg::PointCloud2

= Type: Source/System instrumentation
= Custom tracepointsin ROS2 libraries (rcl, rclcpp)
(included in ROS2 Eloquent) R m
= Uses LTTng as backend to trace ROS2 core (e.g. '
callback durations, msg. send/received, etc.)
= Results can be viewed with Trace Compass or
parsed with Babeltrace/Jupyter Notebooks j |.

= Assessment: ld ,,MW
= (+) Low-effort/-overhead tracing of the ROS2 core Z

= (+) System internals can be traced in parallel

= (-) Requires custom ROS2 source build

(9 Swappable packages are planned) Callback durations over time for the
topic /pcl inthe Downsampling node

duration (ms)

000000000000000000000000000000
start (2019-10-25 17:15)

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 16

Test Setup (2)

Defining a Real-Time Constraint

/pcl_start /nonground_points
Ground <
UDP | Velodyne Filter /points_ground

/pcl

Driver

Down-
sampling

— /points_downsampled

Max. Latency ¢, = 120 ms

= UDP packets are sent out continuously during the rotation of the LIDAR:
= Acquisition and transfer of a complete point cloud (PCL) takes ~100 ms (= 10 Hz)

= Constraint:
= Detect start of PCLs and signal using new topic (/pcl start)(not recommended!)
* Interval:publish start(/pcl start)=> publish end(/points downsampled)

= Max. Latency cy: 100 ms (min. duration of PCL transfer) + 20 ms (arbitrarily selected)

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 17

rosout/printf

= Type: Source instrumentation

= Logtime and data at certain code locations:

"= RCLCPP INFO(...)

B std::cerr + std::chrono

= Parselog files and calculate constraints based

on printed timestamps

= Assessment;
= (+)Simple and flexible
= (-) High amount of manual work

= (-) May affect performance (e.g. no inlining)

while(...) |
PacketT pkt;
(void) get packet (pkt, m udp socket);

if (first packet of pcl) {
RCLCPP INFO (node logger, "PCL START");
first packet of pcl = false;

}

if (this->convert (pkt, output)) {
first packet of pcl = true;
m pub ptr->publish (output) ;

\ 4

[INFO 1571065761.831277989]
[vlpl6 driver node]:
PCL START (run() at udp driver node.hpp)

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 18

rosout

printf
2
_/

150

printf
1
rosout

200

150

Measuring Latency (Two Sample Runs)
200
150
100

rosout/printf

Latency / ms

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 19

rosbag?2

https://github.com/ros2/rosbag?2

= Type: System (here: ROS2) instrumentation
Capture rosbag during application execution

Parse rosbag and use timing of ROS messages to
calculate constraints

Assessment:

(+) Simple tracing setup (ros2 bag record -a)
(+) Timing data combined with functional data

(-) Tracepoints limited to ROS messages
(-) Overhead (but: configurable)

topics = {} # dict: id -> name
events = {} # dict: t -> event

with sglite3.connect (bag) as conn:
Parse topics
query = conn.execute (
'select * from topics')
for id, name 1in query:
topics[id] = name

Parse events
query = conn.execute (
'select * from messages')
for topic id, t in query:
topic name = topics[topic id]
events.setdefault(t, []).
append (topic name)

Sample Python script to parse
rosbags

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 20

Results (Two Sample Runs)

rosbag?2

-2000 -1000

-3000

-3000

200
1501

Latency / ms

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 21

roshag?
Results - eTET TTETETREIITTIRE

———————— /pcl_start (rosbag)
C oo-mmmme /pcl start (rosout)

>* /points_downsampled (rosbag)
*» /points downsampled (rosout)

L -
19988 ms

T
i

© SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 22

SLX Performance Testing Platform

https://www.silexica.com/

= Built-in system, ROS2, and

application tracing:
= Wide range of metrics (CPU, ROS2,
network, etc.)
= Multi-run analysis
= Configurable stress generators
(CPU, memory,...)

= OpenAPI:

= Easily integrates into existing Cl
= Automated (RT) constraint testing
= Demonstrated here

= Scalable:
= Cloud/on-premise/desktop support

-
- -
- ..

‘.’."- —
Cl Cl Results
/ ™

Software Targets
(x86_64, Linux) S LX —\l
.. System
/ Dashboards

\,@

Analysis Workers Analytics
Workbench

)

—
e

Hardwa re Targets
(aarché4, Linux)

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 23

ERRNERER R N

Summary

= Proving RT constraints for typical ROS 2
systems is very hard and costly (and in

many cases unfeasible)

= Measurement-based approaches can be
integral in understanding/optimizing the
RT properties of a ROS2 system but give

no guarantees

= There are many tools that can help
optimize a ROS2 system for RT, but they
cannot replace a proper RT system

design

CPY Load o Sfipeert Exprroerty

CPU Load ot Afierent Expeimests
l

En00oooEE

CPU Load Statistics for different
Autoware.auto commits in the SLX
Performance Platform

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 25

Thanks!

Visit booth (23) to learn more about our
tools and enter the raffle for a chance to win
a Nvidia Jetson AGX Javier devkit!

SILEXICA =28on

ERRNERER R N

perfrecord -F CSERIEISISSIIIIoisIiiooit
https://perf.wiki.kernel.org/index.php/Main Page 0T - 'E':' :-E
° ° [) | ‘

= Type: System instrumentation (sampling) | - |

= perf has many different operating modi, shown S | |??=|| 5!'1

here: Sampling mode EEEm | Tw i

. I)7 o il

= Sample stack traces at regular intervals | S e S S————— |
. . . | @ Emmemcpy @ 27 autowarezpe. (M0
= |nteractive stack trace visualizer: e S
| @ 77 senson)

(http://www.brendangregg.com/flamegraphs.html)

L
a
I!-':’;

"okt
“BelE-l- 8
!;4-_

rclcpp::AnySubscriptionCallback<sensor_msgs::msg::PointCloud..

= Assessment:
= (+) Lightweight
= (+) Full system sampling supported
= (+) Very good for process/function profiling
= (-) Not directly suited to evaluate RT constraints

rclcpp::executor::Executor::execute_subscription

-»____ _
|...

Sample Flamegraph for the
Downsampling Node (excerpt)

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 28

LD_PRELOAD

https://www.linuxjournal.com/article/7795

= Type: Binary interception
= Intercept callstoshared libraries: LD PRELOAD=/myLib.so ros2 run ...

= E.g. Detect dynamic memory allocations in (unit) tests using OSRF testing tools
(https://github.com/osrf/osrf testing tools cpp)

= Assessment:
= (+) No changes to application or library
= (+) No re-compilation needed
= (-) Only at shared library boundaries

= Results:
= Calls to malloc, free, etc. over time in the three perception pipeline modules

1l sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec 11 sec 12 sec

dynmem calloc =0

dynmem__free =0 IIHIHHHIIIMIIIﬂlIIIIIIIIIHH

(T
HllmmllIII‘I‘IIIIIFIIHITHIIIHIIIIHII

1
[

[T
dynmem__malloc =0 HI]IIIIWHIIIIIIIIIIIIHHII‘IIIII_‘IIIIII

dynmem realloc =0 | || | Nnimnr i

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 29

Stress Testing Tools

Generators

= dohell script:
= Starting a sensible mix of latency generators, with no one clearly dominating

(http://groups.google.com/group/linux.kernel/msg/0c88c397347cbd2a)

= Linux stress tool:
= —c:CPU load, -m: Allocate/free memory, -i:1/0O load

= File system access:
= find /dir/ -lteratesover /dir/ = Causesdisk accesses — Interrupts
= du /dir/-Computes totalsize of all filesin /dir/ = Causes disk accesses

= Cause network traffic:
= ping -1 9999 -1 0.0001 - Highlocality in small function of network stack

- Does not stress cache + virtual memory management

©SILEXICA | Allrights reserved | Confidential | 30-Oct-19 | 30

Stress Testing Tools

Benchmarks

= Benchmarking interrupt processing in kernel:
= RealFeel: measure timing accuracy of periodic time interrupt
(http://brain.mcmaster.ca/~hahn/realfeel.c)

= Benchmarking RT-extended Linux kernel:
= Linux RT Benchmarking Framework (https://www.opersys.com/Irtbf)

= Hourglass: Synthetic application for benchmarking of ms/us task scheduling

(http://www.cs.utah.edu/~regehr/hourglass)

©SILEXICA | All rights reserved | Confidential | 30-Oct-19 | 31

