
© 2019 Apex.AI, Inc.

Safe and certified software
for autonomous mobility

TM

© 2019 Apex.AI, Inc.

Doing Real-time With ROS 2:
Capabilities And Challenges

Dejan Pangercic

Definition of Real-time

© 2019 Apex.AI, Inc.

Real-time Definition (control):

Real-time (control) system means that the (control) system must
provide the (control) responses or actions to the stimulus or requests

within specific times, which therefore depend not just on what the
system does but also on how fast it reacts.

Zhang, P. (2008). Industrial control technology: a handbook for engineers and researchers. William
Andrew.

ROS 2 Real-time and Angles

© 2019 Apex.AI, Inc.

3 Different Angles

Angle 1: ROSCon 2019: Real-time Workshop

© 2019 Apex.AI, Inc.

1 Physical

2 Data Link

3 Network

4 Transport

5 Session

6 Presentation

7 Application

Hardware & Connectivity (e.g. Ethernet)

Protocols (e.g. UDP/IP, TCP/IP)

Dev.
Tools

ROS Middleware (RMW)

OS +
drivers

ROS API (C / C++ Libraries)

DDS

ROS 2 ApplicationsROS 2 Applications

5 Session

6 Presentation

7 Application

https://www.apex.ai/roscon2019

Angle 2: History - ROS and Real-time Publications

© 2019 Apex.AI, Inc.

1. A motivating theoretical example
2. Introduction to real-time computing

● Hard real-time: Missing a deadline is considered a
system failure

3. Dependencies and best practices
● RTOS: Linux RT PREEMPT, QNX
● Middleware: DDS
● Prioritize real-time threads
● Avoid sources of non-determinism: memory allocations,

blocking synchronization, printing and logging (to hard
disk), non real-time transport protocols (TCP/IP), page
faults

4. ROS 2 design
5. ROS 2 Node Lifecycle
6. ROS 2 communications: inter-process, intra-process,

same-thread
7. Real-time benchmark demo

● Maintained by Carlos and Lander now, can be seen at
Alias Robotics or Apex.AI booths

https://github.com/ros2-realtime-demo/pendulum

Recap: ROS and Real-time Publications

© 2019 Apex.AI, Inc.

1. Definition of determinism:
● A deterministic system will always produce the
 same output when starting conditions and inputs
 are the same

2. Dissected a use case for navigation in warehouses:
● move_base

3. Dissected internals of roscpp pub/sub loop
4. Timestamping of sensor data and synchronization
5. Data aggregation policies
6. Sampling and sampling effects
7. Architectural choices when building a robotics

system
● data-triggered
● time-triggered
● queue sizes

8. Tracing:
● LTTng

https://roscon.ros.org/2017/presentations/ROSCon%202017%20Determinism%20in%20ROS.pdf

Recap: ROS and Real-time Publications

© 2019 Apex.AI, Inc.

1. Time Synchronization in modular collaborative robots
2. Towards a distributed and real-time framework for

robots: Evaluation of ROS 2.0 communications for
real-time robotic applications

3. Real-time Linux communications: an evaluation of the
Linux communication stack for real-time robotic
applications

4. Time-Sensitive Networking for robotics

Series of papers, Acutronic Robotics

https://arxiv.org/pdf/1809.07295.pdf
https://arxiv.org/pdf/1809.02595.pdf
https://arxiv.org/pdf/1809.02595.pdf
https://arxiv.org/pdf/1809.02595.pdf
https://arxiv.org/pdf/1808.10821.pdf
https://arxiv.org/pdf/1808.10821.pdf
https://arxiv.org/pdf/1808.10821.pdf
https://arxiv.org/abs/1804.07643

Angle 3: Industrial Use Cases That Require Real-time Software

Autonomous agricultural robots

© 2019 Apex.AI, Inc.

Autonomous cars

Indoor logistics platforms

 Autonomous Trucks

Airborne drones

￼￼￼￼￼

Use Case Autonomous Driving

1. Autonomous driving car drives on the straight
road and suddenly encounters an obstacle in
the front

2. Simplified HW/SW architecture:

© 2019 Apex.AI, Inc.

Lidar-object
Detection
Stack

Velocity Set

Low level
control

Drive by wire
interface

UDP packets Bounding
Boxes

Trajectory

CAN messages
Velocity,
steering angle

Map,
localization,
motion
planning

Use Case Autonomous Driving

Real-time requirements
● An entire pipeline runs with 10Hz which is the

output rate of a lidar sensor
● Car travels at 40mph (17.88m/s)
● Bounding boxes are coming in every 100ms
● Exactly at the point when we would start

detecting a vehicle in front of us, we get a
dropped or mis-synchronized frame

● The lidar sensor has a reliable detection range
up to 40m and we can break with the maximum
6m/s2 deceleration

● If we travel with 17.88m/s and break with
6m/s2: t = vs - ve / a = 3s to stop

● In terms of distance this means (d = 1/2 * a * t2)
= (d = 1/2 * 6m/s2 * (3s)2) = 27m

● This adds 200ms to the stopping time d = 1/2 *
6m/s2 * (3s)2 + 0.2 s * 17.88 m/s = 30.58m

● Remember: we have 40m to stop
● 7 dropped frame means collision

© 2019 Apex.AI, Inc.

Velocity Set

Low level
control

Drive by wire
interface

UDP packets Bounding
Boxes

Trajectory

CAN messages
Velocity,
steering angle

Lidar-object
Detection
Stack

Map,
localization,
motion
planning

Use Case Airborne Drones

1. Drone with visual navigation and obstacle
avoidance

2. Drone has to be capable to navigate and avoid
obstacles in real time

3. Simplified HW/SW architecture:

Obstacle
Map

Sync
Trigger

Camera
Images

Desired Motor
Speed

Delta poses

IMU measurements

State
Estimate

Reference
Trajectory

IMU @ 1kHz

Camera driver
@ 30 Hz

Visual-Inertial
Odometry

(State Estimation)

Visual Odometry
@ 30 Hz

Dense 3D mapping

Trajectory tracking
Controller @ 1kHz

Motion planning
system

High-level objectives

Motor controllers
@ 1kHZ

© 2019 Apex.AI, Inc.

Small Computer

Use Case Airborne Drones

Real-time requirements
● IMU has to be real-time at highest rate

possible
● Time synchronized camera images
● Big-small computer architecture

○ Hardware communication layer in between
● Running on the "big computer": camera driver,

visual odometry, dense mapping, motion
planning

● Running on uC: trajectory tracking, state
estimation, motor control

● Jitter in the communication between big and
small computer, jitter in process scheduling

● Camera images might come too late which can
cause everything downstream in the pipeline to
miss a deadline

● The motion planner could not recompute a new
trajectory within a deadline

○

● Thanks to Teo Tomic
© 2019 Apex.AI, Inc.

Obstacle
Map

Sync
Trigger

Camera
Images

Desired Motor
Speed

Delta
 poses

IMU measurements

State
Estimate

Reference
Trajectory

IMU @ 1kHz

Camera driver
@ 30 Hz

Visual-Inertial
Odometry

(State Estimation)

Visual Odometry
@ 30 Hz

Dense 3D
mapping

Trajectory
tracking

Controller @ 1kHz

Motion planning
system

High-level
objectives

Moto controllers
@ 1kHz

Small Computer

Use Case Autonomous Trucks

1. Autonomous truck > 25t has to reverse park into the
loading dock with high accuracy < 9cm

2. Simplified HW/SW architecture:

Dock detection
and tracking

Planning and
trajectory
control

Low level
control

Drive by wire
interface

UDP packets Goal pose

CAN messages

Map,
localization

Round trip time

© 2019 Apex.AI, Inc.

Use Case Autonomous Trucks

Real-time requirements
● 100ms available for the maximum round trip

time
● Round trip time to be constant
● High inertia of the truck and a high round trip

time => predict the movement of the truck in the
controller

● A low maximum round trip time and low jitter
(variance) of this round trip is essential

● When too many (LiDAR) messages are lost in
the high level to low level communication =>
emergency stop

● Problem: many control loops and
asynchronous data communication

● Thanks to Tobias Augspurger

Dock detection
and tracking

Planning and
trajectory
control

Low level
control

Drive by wire
interface

UDP packets Goal pose

CAN messages

Map,
localization

Round trip time

© 2019 Apex.AI, Inc.

Use Case Logistics Robot

● Magazino’s Toru robot has a sophisticated
safe speed control when navigating
between shelves in the warehouse

● LiDAR-based sensing
● When all fields are free => 1.5m/s
● Far field is blocked => 0.7m/s
● Near field is blocked => 0.3m/s

● Thanks to Kai Franke

© 2019 Apex.AI, Inc.

Use Case Autonomous Weeding Robot
1. Autonomous weeding robot distinguishes

plants with deep learning and
mechanically removes weeds

2. Simplified HW/SW architecture:

Plant
classification
(CNN)

Plant
classification
fusion

Low level weed
targeting
controller

CAN Interface

UDP packets Plant pose

CAN messages

Localization
(Odom, GPS)

© 2019 Apex.AI, Inc.

Use Cases Autonomous Weeding Robot

Plant
classification
(CNN)

Plant
classification
fusion

Low level weed
targeting
controller

CAN Interface

UDP packets Plant pose

CAN messages

Localization
(Odom, GPS)

Real-time requirements
● Entire pipeline runs at 10Hz which is the output

rate of the camera
● Robot travels at 2,2mph (1m/s)
● Plant classification takes 100ms
● The weeding tool is 20cm from the camera.
● One frame drop is a 100ms delay
● In 200ms, the robot has travelled 20cm
● 20cm means that the robot can barely remove

the weed
● Remember: the tool is located 20cm from the

camera

© 2019 Apex.AI, Inc.

ROS 2 Features for Real-time

● Several companies are running ROS 2 on
real-time HW (e.g Renesas R-Car H3)

● ROS 2 support for QNX and VxWorks
● Memory allocations and management

OSRF found and fixed memory allocations in
rmw, rcl, rclcpp
“ROS2 Real-Time Behavior: Static Memory

Allocation” => talk on Friday

● (Soft) real-time DDSes (CoreDX, Cyclone,
FastRTPS 1.9.x)

● loaned messages (first iteration)
To be able to loan and give back memory to
the middleware

● New intraprocess mechanism
● rclcpp::Lifecycle (ROS 2 node as an FSM)
● Zero-copy transport

See “A true zero copy RMW implementation
for ROS2” talk on Friday

● Real-time support package (as a demo)

© 2019 Apex.AI, Inc.

Summary of pain points from above
● Lost or delayed messages
● Performance
● Scheduling

● Jitter
● Inter-computer communication
● Patterns for event-based communication

(proactor vs reactor)
● Safety mechanisms realized with HW
● ROS 2 on HW for accelerate compute (GPU,

FPGA)
● Timestamping of data
● Safety and certification
● Porting from ROS 1 => ROS 2

https://github.com/ros2/ros2/issues/734#issuecomment-519425530
https://discourse.ros.org/t/ros2-on-vxworks-rtos/9806
https://discourse.ros.org/t/ros2-real-time-working-group-online-meeting-2-aug-21st-2019-between-7am-and-8am-pdt-utc-7/10279/22
https://github.com/tocinc/rmw_coredx
https://github.com/ros2/rmw_cyclonedds
https://github.com/ros2/rclcpp/pull/778
https://github.com/ros2/ros2/issues/785
https://github.com/ros2-realtime-demo/pendulum
http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/magistraleinformatica/tdp/tpd_reactor_proactor.pdf

ROS 2 Features for Real-time

● Porting articles:
a. Chris Ho blog post porting velodyne driver

from ROS => ROS 2
b. “Migrating to ROS 2: Advice from Rover

Robotics”, talk on Thursday
● Communication

a. “Quality of Service Policies for ROS2
Communications”, talk on Friday

© 2019 Apex.AI, Inc.

Summary of pain points from above
● Lost or delayed messages
● Performance
● Scheduling

● Jitter
● Inter-computer communication
● Patterns for event-based communication

(proactor vs reactor)
● Safety mechanisms realized with HW
● ROS 2 on HW for accelerate compute (GPU,

FPGA)
● Timestamping of data
● Safety and certification
● Porting from ROS 1 => ROS 2

https://www.apex.ai/post/porting-algorithms-from-ros-1-to-ros-2
http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/magistraleinformatica/tdp/tpd_reactor_proactor.pdf

ROS 2 Real-time WG
Members
● Bosch
● Windriver
● Intel
● AdLink
● Carlos
● Nobleo
● OSRF
● Amazon
● Ubiquity Robotics
● eSol
● TierIV
● Sony
● Victor

Join us:
● https://index.ros.org/doc/ros2/Governance/ (See

Real-time)
● Past meetings:

https://discourse.ros.org/search?expanded=true&q=ROS2%20Real-time%20Working%20Grou
p%20%23ng-ros%20in%3Atitle

● Meetings every 2 weeks
© 2019 Apex.AI, Inc.

Topics
● Real-time and static executor
● Single process, real-time rmw
● Static memory audit and improvements
● Tools for static and dynamic code analysis and tracing
● Performance testing platform

● Planned for later:
○ Fault isolation
○ Safety and Certification
○ Wait-sets
○ Real-time C++

Reference architectures for selected use cases

https://index.ros.org/doc/ros2/Governance/
https://discourse.ros.org/search?expanded=true&q=ROS2%20Real-time%20Working%20Group%20%23ng-ros%20in%3Atitle
https://discourse.ros.org/search?expanded=true&q=ROS2%20Real-time%20Working%20Group%20%23ng-ros%20in%3Atitle

Modern C++ for Safety Critical Products

© 2019 Apex.AI, Inc.

Topics
● C++ compiler and standard library
● Memory static standard containers and

exceptions
● Threading and related architecture
● Failure injection

Real-time LiDAR Object Detection Application at Apex.AI Booth

© 2019 Apex.AI, Inc.

Key features:
1. Apex.AI real-time ROS 2
2. Renesas R-Car H3 ECU

3. QNX, Linux with RT PREEMPT

Conclusions

© 2019 Apex.AI, Inc.

1. Real-time ROS 2 depends on layers below (HW, RTOS, DDS) and layers above (Application). Use tools
to help you with validation. Real-time affects safety requirements (and other way around).

2. Come join us in the ROS 2 Real-time Working Group to work on this challenge together:
https://index.ros.org/doc/ros2/Governance/ (See Real-time)

3. Contact: dejan@apex.ai

https://index.ros.org/doc/ros2/Governance/

Backup

1. Backup

© 2019 Apex.AI, Inc.

2
5

What is needed for safe modern C++ based product

High level requirements
1. Qualified Toolchain
2. Memory static operation
3. Real Time
4. Testability

© 2019 Apex.AI, Inc.

This talk will exercice the above requirements on
1. C++ compiler and standard library
2. Standard containers and exceptions
3. Threading and related architecture
4. Failure injection

2
6

Requirements and Challenges

Requirements
• Application must be memory static at runtime
• No memory fragmentation should occur
• One should be able to reason about resource usage and

resource limits of containers to ensure that those are sufficient
during the whole runtime of an application

•
Challenges
• Standard C++ containers allocate memory and allocate this

memory using different strategies
• Stack memory is very limited, running out of stack is hard to

recover from
• Memory pools can fragment, depending on how they are used
• Traceability of resource usage must be given to be able to

prove a system does not run out of resources which would
introduce a safety hazard

Memory pools and
allocators are only
one piece of the
solution.

© 2019 Apex.AI, Inc.

2
7

Solution
Strings (std::string)
Compile time fixed size string with stack storage in two flavors, one which
silently truncates and one which throws on overflow
• No memory allocation
• Small size makes it well suitable to store on the stack
• Simple to use

Vectors (std::vector)
Runtime fixed size vector which allocates from heap on construction
• Memory for each vector is allocated before runtime
• Satisfies continuous memory guarantees
• Harder to use as not constructable or copyable during runtime

Node based containers (std::map, std::set etc.)
Memory-pool / allocator framework (for example https://github.com/foonathan/memory)

• Pools are allocated before runtime
• One pool per type prevents memory fragmentation
• Pools can be arbitrarily granular ensuring resource

isolation and makes proving that the application does not
run out of resources easier

• Unordered containers do not work with fixed size pools
https://bduvenhage.me/performance/2019/04/22/size-of-hash-table.html

Different container
types require
different solutions

© 2019 Apex.AI, Inc.

https://bduvenhage.me/performance/2019/04/22/size-of-hash-table.html

2
8

What is needed for safe modern C++ based product

High level requirements
1. Qualified Toolchain
2. Memory static operation
3. Real Time
4. Testability

© 2019 Apex.AI, Inc.

This talk will exercice the above requirements on
1. C++ compiler and standard library
2. Standard containers and exceptions
3. Threading and related architecture
4. Failure injection

2
9

Requirements and Challenges

Requirements
• Application must be memory static at runtime, therefore

exceptions need to be memory static
• One should be able to reason about resource usage and

resource limits of exception management to ensure that those
are sufficient during the whole runtime of an application

• Runtime of routines need to be bounded and well understood
•
Challenges (might not be the same for all compilers)
• Throwing an exception allocates memory on the compiler level
• Standard exceptions allocate memory to store the

error strings
• Exception handling adds hard to track and hard to

analyze execution branches to an application. This
complicates runtime and test coverage analysis.

Exceptions allocate
memory!

© 2019 Apex.AI, Inc.

3
0

Making exceptions memory static

Modify how compiler allocates memory for exception
Example on how to do this for GCC: ApexAI Static Exception

Different compilers
required different
solutions

© 2019 Apex.AI, Inc.

extern "C" void * __cxa_allocate_exception(size_t

thrown_size);

extern "C" void __cxa_free_exception(void *thrown_object);

extern "C" __cxxabiv1::__cxa_dependent_exception *

__cxa_allocate_dependent_exception();

extern "C" void __cxa_free_dependent_exception

(__cxxabiv1::__cxa_dependent_exception *

dependent_exception);

Modify the standard C++ library to use a string storage which
does not allocate
We’re still working on this

https://github.com/ApexAI/static_exception/blob/master/src/exception_memory_pool.cpp

3
1

Open Challenges

JSF Coding Standard (2005)

• Exception handling creates additional branches which
are hard to cover with tests and 100% branch coverage is
mandatory for the highest safety levels

Tool support for
exceptions is still a
challenge

© 2019 Apex.AI, Inc.

3
2

What is needed for safe modern C++ based product

High level requirements
1. Qualified Toolchain
2. Memory static operation
3. Real Time
4. Testability

© 2019 Apex.AI, Inc.

This talk will exercice the above requirements on
1. C++ compiler and standard library
2. Standard containers and exceptions
3. Threading and related architecture
4. Failure injection

3
3

Requirements and Challenges

Requirements
• Tasks need to have a deterministic runtime
• Execution of a task needs to be interruptible by a higher priority task
• Lower priority task must not block higher priority ones

Challenges
• Standard C++ threading library only provides very basic control

over thread priorities, priority inheritance, CPU pinning etc.
• Execution in C++ is not preemptible (yet), making it hard

to write any kind of real-time capable executor
• It is very difficult to ensure multithreaded code is correct

because code execution is interleaved in a non-deterministic
way

• If a data race occurs, the behavior of the program is
undefined

© 2019 Apex.AI, Inc.

3
4

Solutions

Custom standard threading library
A custom modern C++ threading library abstracts away the POSIX interface,
which makes creating multithreaded application easier and hides
implementation details
• Threads are created during initialization, but put on hold until started for

runtime
• Thread priority, CPU pinning, etc. are configurable
• Mutexes support priority inheritance

Rely on the OS Scheduler
• Well understood
• Good tool support
• Disadvantage: More context

switches than with an executor
based architecture

Use advanced tools to ensure correctness
• Thread Sanitizer
• Clang Thread Safety Analysis
• Hellgrind

Library support,
Software architecture
and tools need to be
in place

© 2019 Apex.AI, Inc.

Thread

Wait for trigger / data

Process data

https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSafetyAnalysis.html
http://valgrind.org/docs/manual/hg-manual.html

