
© 2021 Apex.AI, Inc.

The vehicle OS company.

Ⓡ

© 2021 Apex.AI, Inc.

Executor based on wait-set
and polling subscription
michael.poehnl@apex.ai

mailto:michael.poehnl@apex.ai

© 2021 Apex.AI, Inc.

What ROS users are used to

© 2021 Apex.AI, Inc.

Default ROS 2 execution model

● Node
○ Publishers
○ Subscriptions
○ Clients
○ Services
○ Timers
○ …

● Executor reacts on events
○ Publisher sends a message
○ Client sends a request
○ Timer expires
○ ….

● Executor executes callbacks for the events
○ Subscription callbacks
○ Service callbacks
○ Timer callbacks
○ ...

© 2021 Apex.AI, Inc.

How can such an executor
be implemented?

© 2021 Apex.AI, Inc.

Executor

Active Object Pattern

● Executor has an event queue and an own thread of control for decoupling
from producers

● E.g. a condition variable is used to do a non-busy wait on the queue
● Executor thread is woken up if a new event is pushed to the queue
● Events typically contain the data to be processed
● One or many threads are used to execute the tasks associated with the

events
● That’s roughly how it was implemented in ROS 1

Event Producer Event Producer Event Producer

Thread 1 Thread n

© 2021 Apex.AI, Inc.

Perfect match when the events
are related to a specific task

© 2021 Apex.AI, Inc.

+ onPhoneButtonPressed()
+ onMusicButtonPressed()
+ onMapsButtonPressed()
+ onMessagesButtonPressed()
+ ...

NEW

© 2021 Apex.AI, Inc.

Some things are different
with ROS 2, right?

© 2021 Apex.AI, Inc.

Middleware

DDS and the default ROS 2 executors

● DDS is used as middleware
○ Data readers already queue messages (in the reader cache)
○ Event-driven interaction via

■ Listener (Event callbacks are executed in a middleware thread)
■ Wait-set (User thread can wait for events that trigger the wait-set)

● Current ROS 2 default executors use a wait-set for DDS related events
○ Attach the event sources like subscriptions or services to a wait-set
○ Wait in an executor thread for the wait-set to get triggered
○ Execute callbacks for the entities that triggered the wait-set
○ By (DDS) design, handling of events and messages are separated

Executor

DDS Data Writer DDS Data Writer DDS Data Writer

Thread 1 Thread n

Event handling
with wait-set

DDS Data Reader DDS Data Reader DDS Data Reader

Events Messages

© 2021 Apex.AI, Inc.

You can also have the ROS 1
event queue back

© 2021 Apex.AI, Inc.

Roughly like this

Middleware

Executor

DDS Data Writer DDS Data Writer DDS Data Writer

Thread 1 Thread n

DDS Data Reader DDS Data Reader DDS Data Reader

Events Messages

Middleware
Listener Thread

© 2021 Apex.AI, Inc.

But my use case is another

© 2021 Apex.AI, Inc.

Fusion node
Execution 1

Fusion node
Execution 2

Fusion node
Execution 2

A typical use case

● A node has several subscriptions with different update frequencies (e.g. a fusion node)
● A node has a specific task (e.g. fuse the radar objects with the latest camera objects, use latest transformation for this)
● The node task shall be executed whenever a specific condition is met (e.g. new radar message is available)

Camera processing
node

Radar processing
node

Transformation
node

© 2021 Apex.AI, Inc.

Is this also a perfect match?

Fusion node

Camera processing
node

Radar processing
node

Transformation
node

onNewImage()

onNewRadarScan()

onNewCameraObjects()

onNewRadarObjects()

onNewTransformation()

© 2021 Apex.AI, Inc.

● Why should I handle callbacks for messages that are not needed for my task?
● Why should I take care of message caching when DDS can do this for me (History QoS)?
● Why should I bother with these unnecessary context switches when I could avoid them?
● Wouldn’t it be good if the node were called to do its task whenever the execution condition is met?

A typical use case

Fusion node
Execution 1

Fusion node
Execution 2

Fusion node
Execution 2

Camera processing
node

Radar processing
node

Transformation
node

© 2021 Apex.AI, Inc.

Executor based on wait-set and polling subscription

● Node base class
○ void execute() - called by the executor when the execution condition is met
○ subscription_list get_triggering_subscriptions() - get the subscriptions relevant for triggering the node execution

● Polling subscription
○ Sounds worse than it is - We only “poll” when the executor tells us it makes sense (execution condition is met)
○ Allows to read() and take() messages from the DDS reader cache
○ Allows to drop uninteresting messages already in the middleware (e.g. set History QoS=1 if latest is greatest)

● Efficient use of the DDS wait-set
○ Only attach to the wait-set the events that are relevant for the node execution

● Executor based on these building blocks (and some more …)
○ Calls the execute() method of a node when one of the triggering events occurs
○ Optionally, a callable provided by the user is used as an execution condition that is evaluated on triggering events

● Can you do this with ROS 2?
○ Not straightforward, but there is a starting point as with the Foxy release an rclcpp::WaitSet and a take() method for

subscriptions were introduced (https://github.com/ros2/rclcpp/pull/1047)

https://github.com/ros2/rclcpp/pull/1047

© 2021 Apex.AI, Inc.

Fusion example

● Only the radar subscription is a triggering one
● Executor calls execute() of the fusion node whenever a new radar message is received
● In execute_impl() the new messages from radar, camera and transformation are taken and processed

© 2021 Apex.AI, Inc.

Planner example

● The planner shall be executed every 100ms, no triggering subscriptions
● Executor calls execute() of the planner node whenever the cyclic timer expires
● In execute_impl() all new messages are taken and processed

© 2021 Apex.AI, Inc.

Execution condition example

● The fusion node shall be executed if there is at least one message for radar and camera
● Executor calls execute() only if the provided execution condition returns true
● Execution condition is evaluated whenever the wait-set gets triggered (here on new radar and camera messages)

© 2021 Apex.AI, Inc.

Results for the reference system

● Reference system v0.1.1, Raspberry Pi with Ubuntu 20.04, using all 4 cores
○ No overload or dropped messages when using the ROS 2 multi-threaded executor

● Focusing on comparison of multi-threaded executor with Apex.OS executor
● Measurements were done with Apex.OS and Apex.Middleware

○ I.e. the multi-threaded executor runs in Apex.OS and not in ROS 2 Galactic
○ rmw_apex_middleware was also used for the multi-threaded executor

● Assignment of nodes to Apex.OS executors and core affinity for executors to best meet the target KPIs

Core 0

Core 3

Core 3

Core 1 + 2

© 2021 Apex.AI, Inc.

Results for the reference system

with default number crunching

© 2021 Apex.AI, Inc.

Results for the reference system

without number crunching

© 2021 Apex.AI, Inc.

Results for the reference system

with default number crunching

© 2021 Apex.AI, Inc.

Results for the reference system

Turn off number crunching Turn off number crunching

?

80% of the time is spent in
rclcpp::wait_for_work()

© 2021 Apex.AI, Inc.

Results for the reference system

ROS 2 Galactic without number crunching

© 2021 Apex.AI, Inc.

The vehicle OS company.

Ⓡ

Thank you!
michael.poehnl@apex.ai

mailto:michael.poehnl@apex.ai

