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LOCK-FREE PROGRAMMING s—

- Compare-and-swap (CAS) is an instruction

used in multithreading to achieve
synchronisation. It compares the contents of
a memory location with a given value and,
only if they are the same, modifies the
contents of that memory location to a new
given value. This is done as a single

atomic operation.

- Compare-and-Swap has been an integral

part of the IBM 370 architectures since
1970.

- Maurice Herlihy (1991) proved that CAS can

implement more of these algorithms than
atomic read, write, and fetch-and-add
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LOCK-FREE PROGRAMMING =—
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» Threads need to acquire lock to access resource. e Threads access resources using ‘Atomic Operations’
» Context switch: « Compare and Swap (CAS):
» Suspended while resource is locked by e Try to update a memory entry
someone else « If not possible tried again
« Awaken when resource is available. « No locks involved, but ‘busy wait’

« Not deterministic, power consuming context switch. , No context switch required.
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Klepsydra Ring-buffer
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Kilepsydra Lock-free executor ———
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How does it work?
- Similar implementation to the Static Single Thread Executor

. All subscriptions and timer tasks run on the same thread

- Publishers can run on any thread

Implementation details

- Subscriptions from all message types are treated as

Eventloop’s listeners
- Timers are treated as Eventloops scheduled functions

- Similar to the Static Single Thread, there is no cloning.
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ROS2 CHALLENGE'S "

Open issues in ROS2:

1. High CPU use of executor. (https:/aithub.com/ros2/rclcpp/
issues/1637)

2. Large pointcloud pubsub is unstable when there are
many subscribers. (https:/github.com/ros2/
rmw_cyclonedds/issues/292)
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CODE EXAMPLE "

#include <kpsr_ros2_executor/executor_factory.hpp>

int main(int argc, charxx argv) {
rclcpp::init (0, nullptr);

rclcpp::Executor::SharedPtr exec = kpsr::ros2::ExecutorFactory::createExecutor(kpsr::ros2::QueueSize::_256, false);

API Explained

1. Klepsydra offers a factory of executors. Mapping to nodes can be customised via configuration file.

Factory returns shared pointer to rclcpp: :Executor

2.
3. Size of underlying ring-buffers to be provided by constructor. It can be customised via configuration file.
4.

“Test” version available (last bool arg). This test version is a synchronous, single-thread, blocking queue.
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Multiplexer Executor

ROS2 Realm

ROS2 Publisher

Klepsydra Realm l

Producer1

Q)

.
, _
Consumer|1 — Consumer 2

' '

ROS2 Subscription ROS2 Subscription

How does it work?

« Each consumer on its own

thread
- Processing rate can be
anything

- Data integrity guaranteed

Best performance in the following
scenarios
- Few producers and many
consumers
- Large data sets (LIiDAR,
Images, etc)
- Power reduction and

throughput needs
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o Data streaming approach to
ROS2 Executors
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Klepsydra Executors can be mapped to nodes (many-to-many) enabling low CPU usage, high throughput
and determinism.
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Benefits
- Low CPU usage
- High throughput with linearly growing CPU usage

- Easy integration.

Best performance in the following scenarios
- Many producers and consumers
- Low to medium data sets

- Power reduction and throughput needs
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