KLEP\YDRA

T [= © H N O L o G | E S

LOCK-FREE ROS 2 EXECUTOR: A
RING-BUFFER TO RULE THEM ALL

ROSCON 2021
Executor Workshop

Dr Pablo Ghiglino
CEO and Founder
pablo.ghiglino@klepsydra.com

www.klepsydra.com

http://www.klepsydra.com

KLEDS‘?DQQ

Destination

yes

LOCK-FREE PROGRAMMING s—

- Compare-and-swap (CAS) is an instruction

used in multithreading to achieve
synchronisation. It compares the contents of
a memory location with a given value and,
only if they are the same, modifies the
contents of that memory location to a new
given value. This is done as a single

atomic operation.

- Compare-and-Swap has been an integral

part of the IBM 370 architectures since
1970.

- Maurice Herlihy (1991) proved that CAS can

implement more of these algorithms than
atomic read, write, and fetch-and-add

KLERP\YDRA

LOCK-FREE PROGRAMMING =—

............................ JQL
\ oy <

» Threads need to acquire lock to access resource. e Threads access resources using ‘Atomic Operations’
» Context switch: « Compare and Swap (CAS):
» Suspended while resource is locked by e Try to update a memory entry
someone else « If not possible tried again
« Awaken when resource is available. « No locks involved, but ‘busy wait’

« Not deterministic, power consuming context switch. , No context switch required.

KLEPR\YDIRA

H N O L o G |

Cobham Microcontroller 716
Power consumption vs Data Processing

Application 100
78
X
Klepsydra SDK | edge soft
S
33
Operating System
. : : :
0 10 20 30

Data processing rate (Hz)

Sensors External Other Events
Comms

KLEPNYDRA

Klepsydra Ring-buffer

Producer1 _eemTTTTTTT S
/// \\
/ // \\
% i . Producer 2
/ ’/” §\\\\ \\
II ,// \\\ \\ ¢
< i g Producer 3 ‘ Producer1
I y \

g,

" e A .4

Consumer 1

KLEPNYDRA

Kilepsydra Lock-free executor ———

ROS2 Realm
ROS2 Publisher ROS2 Timer ROS2 Publisher
Klepsydra Realm /
Scheduler
Producer1 ‘é(')‘ Producer 2
N / ‘\ /3'(
¥ 7 \J
Con;mer ! *1' Consumer 3
Consumer 2 \

ROS2 Subscription

ROS2 Timer ROS2 Subscription

SAEEHER SIS
Klepsydra Lock-free executor =———
How does it work?
- Similar implementation to the Static Single Thread Executor

. All subscriptions and timer tasks run on the same thread

- Publishers can run on any thread

Implementation details

- Subscriptions from all message types are treated as

Eventloop’s listeners
- Timers are treated as Eventloops scheduled functions

- Similar to the Static Single Thread, there is no cloning.

KLERP\YDRA

ROS2 CHALLENGE'S "

Open issues in ROS2:

1. High CPU use of executor. (https:/aithub.com/ros2/rclcpp/
issues/1637)

2. Large pointcloud pubsub is unstable when there are
many subscribers. (https:/github.com/ros2/
rmw_cyclonedds/issues/292)

https://github.com/ros2/rclcpp/issues/1637
https://github.com/ros2/rclcpp/issues/1637
https://github.com/ros2/rmw_cyclonedds/issues/292
https://github.com/ros2/rmw_cyclonedds/issues/292
https://github.com/ros2/rmw_cyclonedds/issues/292

KLEP\YDIRA

120%

100%

80%

60%

40%

20%

0%

180%

160%

140%

120%

100%

80%

60%

40%

20%

0%

CPU Usage. 10 Publishers, 1 Subscriber

500 1000 1500 2000

—@—>SingleThread ==@==MultiThread ==@==Klepsydra

CPU Usage. 30 Publishers, 1 Subscriber

4/

1000 2000 3000 4000 5000 6000

—@—>SingleThread ==@==MultiThread ==@==Klepsydra

180%

160%

140%

120%

100%

80%

60%

40%

20%

0%
2500

160%

140%

120%

100%

80%

60%

40%

20%

0%
7000

Eventioop Executor on Raspberry Pl 4 | =—————

CPU Usage. 20 Publishers, 1 Subscriber

500 1000 1500 2000 2500 3000 3500 4000 4500

—@—>SingleThread ==@==MultiThread ==@==Klepsydra

CPU Usage. 40 Publishers, 1 Subscriber

1000 2000 3000 4000 5000 6000 7000 8000 9000

—@—>SingleThread ==@==MultiThread ==@==Klepsydra

HLEPRYRRA Eventloop Executor on Raspberry Pi 4 || =—

CPU Usage. 10 Publishers, 10 Subscriber CPU Usage. 20 Publishers, 10 Subscriber
160% 140%
S
140% 120%
120%
100% ®
100%
80%
80%
60%
60%
40%
40%
20% e
0% 0%
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000
—@—>SingleThread ==@==MultiThread ==@==Klepsydra —@—>SingleThread ==@==MultiThread ==@==Klepsydra
CPU Usage. 30 Publishers, 10 Subscriber CPU Usage. 40 Publishers, 10 Subscriber
160% 160%
140% 140%
120% L 120% | @
100% L 100% ®
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

10

—@—>SingleThread ==@==MultiThread ==@==Klepsydra —@—>SingleThread ==@==MultiThread ==@==Klepsydra

KLERP\YDIRA

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Ref System Latency

10.00
9.00

.____,__.R. 8.00

7.00
0——'———'——"\. 6.00
5.00
4.00
3.00
2.00
1.00

0.00
50 100 150 200 250 300

—@—SingleThread —@—MultiThread —@—Klepsydra

Ref System Latency

500 1000 1500 2000 2500

—@—SingleThread —@—MultiThread —@®—Klepsydra

Reference System Latency Comparison =——

3000

11

KLERP\YDRA

CODE EXAMPLE "

#include <kpsr_ros2_executor/executor_factory.hpp>

int main(int argc, charxx argv) {
rclcpp::init (0, nullptr);

rclcpp::Executor::SharedPtr exec = kpsr::ros2::ExecutorFactory::createExecutor(kpsr::ros2::QueueSize::_256, false);

API Explained

1. Klepsydra offers a factory of executors. Mapping to nodes can be customised via configuration file.

Factory returns shared pointer to rclcpp: :Executor

2.
3. Size of underlying ring-buffers to be provided by constructor. It can be customised via configuration file.
4.

“Test” version available (last bool arg). This test version is a synchronous, single-thread, blocking queue.

KLEPNYDRA

Multiplexer Executor

ROS2 Realm

ROS2 Publisher

Klepsydra Realm l

Producer1

Q)

.
, _
Consumer|1 — Consumer 2

' '

ROS2 Subscription ROS2 Subscription

How does it work?

« Each consumer on its own

thread
- Processing rate can be
anything

- Data integrity guaranteed

Best performance in the following
scenarios
- Few producers and many
consumers
- Large data sets (LIiDAR,
Images, etc)
- Power reduction and

throughput needs

KLEPRPNYDRA o
o Data streaming approach to
ROS2 Executors

¥ Radar :
lear INU
5 5 Nawgatlbn
Video Sensorsi:
Streaming
ROS2 Node ROS2 Node ROS2 Node

Klepsydra Executors can be mapped to nodes (many-to-many) enabling low CPU usage, high throughput
and determinism.

KLEPNYDRA

Benefits
- Low CPU usage
- High throughput with linearly growing CPU usage

- Easy integration.

Best performance in the following scenarios
- Many producers and consumers
- Low to medium data sets

- Power reduction and throughput needs

CONTACT IN

Dr Pablo Ghiglino

pablo.ghiglino@klepsydra.com

+41786931544
www.klepsydra.com

linkedin.com/company/klepsydra-technologies

mailto:pablo.ghiglino@klepsydra.com
http://www.klepsydra.com
http://linkedin.com/company/klepsydra-technologies

