
WORKSHOP
ROS 2 Executor: How to make

it efficient, real-time and
deterministic?

October 2021

roscon.ros.org/world/2021

Why have a
workshop about

executors?

roscon.ros.org/world/2021

roscon.ros.org/world/2021

• Single-threaded executor
• Multi-threaded executor
• Static single-threaded executor (Nobleo’s talk at ROSCOn 2019)
• Callback-group-level executor (extension)
• RCLC executor
• We had Ingo’s talk at ROSCon 2019 and Ralph's talk at ROS-Industrial 2020

Hasn’t everything already been said?

https://ec2a4d36-bac8-4759-b25e-bb1f794177f4.filesusr.com/ugd/984e93_e7671c9a1884475eb6f39db1f79ea0f5.pdf
https://ec2a4d36-bac8-4759-b25e-bb1f794177f4.filesusr.com/ugd/984e93_ab196a02893e4fb583a06fea20b8a112.pdf
https://www.youtube.com/watch?v=Sz-nllmtcc8&t=113s

roscon.ros.org/world/2021

• Still a lot of people are working on improving performance, determinism and real-time capabilities
• This shows that the executor is one of the most crucial components for ROS 2 in product use

More to come?
https://discourse.ros.org/t/ros2-middleware-change-proposal/15863

https://discourse.ros.org/t/ros2-middleware-change-proposal/15863

roscon.ros.org/world/2021

• Quo vadis ROS 2 executor?
• At ROSCon 2019 we had 2 executors and 2 new were introduced

• Today, at ROSWorld 2021, we have 4 executors and 4 new are introduced

• Should we avoid having 8 executors at ROSCon 2023 and introducing 8 more?

• Goals for the workshop
• Understand how crucial the executor is for a ROS 2 system

• Get an overview of the existing executors and their capabilities

• Introduce an infrastructure that enables executor approaches to be examined / compared

• Trigger the discussion in the community
• What are the pain points, what are the needed features?

• Is a consolidate to 2-3 execution models possible?

• Will this topic be addressed in an existing working group or a new one?

Motivation

roscon.ros.org/world/2021

• Full day in person workshop

• Switching between talks and hands-on sessions

• Step-by-step improving a system running on a Raspberry Pi
• Using different ROS 2 executors
• Tweaking the underlying system for real-time
• Hands-on introduction to the tools for analyzing the system

Planned Agenda

roscon.ros.org/world/2021

Plans change

roscon.ros.org/world/2021

• Current status of executor in ROS 2 Galactic (William)

• Introduction to the reference system (Evan)

• Analyzing the reference system (Christophe)

• Tune the system for real-time (Andrei)

• Callback-group-level executor (Ralph)

• Events executor (Alberto)

Agenda Part I

roscon.ros.org/world/2021

• PiCAS executor (Hyunjong)

• RCLC executor (Jan)

• Executor with wait-set and polling subscription (Michael)

• Lock-free ROS 2 executor: A ring-buffer to rule them all (Pablo)

• Panel discussion (all)

Agenda Part II

roscon.ros.org/world/2021

• Please use the Q&A box for questions

• After each talk 2 questions will be answered live

• The other questions will be answered in the chat after the talk

• If you already have questions for the panel discussion, start the question

with “Panel:”

Q&A

Have a break -
10 min

roscon.ros.org/world/2021

Panel
Discussion

roscon.ros.org/world/2021

roscon.ros.org/world/2021

Executor Overview
Executor Presented by Characteristics Availability

Single-threaded William - Based on wait-set
- Dynamic wait-set reconfiguration Always

Multi-threaded William - Based on wait-set
- Using multiple threads Always

Static single-threaded William - Static wait-set configuration for lower CPU usage since Foxy

Callback-group-level Ralph - Callback groups of a node can be assigned to different executors
- Available for all executors that are based on the rclcpp base class since Galactic

Events Alberto - Listener API as alternative to the wait-set
- Event queue with chronological order planned for Humble

PiCAS Hyunjong - Priority-driven chain-aware scheduling
- Resource allocation algorithms and timing analysis On fork only

RCLC Jan - User-defined processing sequence for callbacks
- Custom trigger conditions, static memory implementation C Client Library

Wait-set + polling
subscription Michael - Executing node callbacks with optional execution conditions

- Optimized wait-set usage with polling subscriptions On private fork only

Ring-buffer Pablo - Lock-free ring buffer and single threaded executors
- Optimised for large throughput and low CPU usage On private fork only

